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Lazy Evaluation and Simultaneous Definitions
When we think of bindings as simultaneous equations, we see how Haskell 
interprets equations in let and where:

x = 2 * z                        x = 10
y = 4                            y = 4
z = y + 1                        z = 5

test = let x = 2 * z
y = 4
z = y + 1

in (x,y,z)

test2 = (x,y,z)  where
x = 2 * z
y = 4
z = y + 1

equivalent to

Main> :r
[1 of 1] Compiling Main 
( Main.hs, interpreted )
Ok, one module loaded.
Main> test
(10,4,5)
Main> test2
(10,4,5)



The same thing is true of equations in your code:

Main> :r
[1 of 1] Compiling Main 
Main.hs, interpreted )
Ok, one module loaded.
Main> x
10
Main> y
4
Main> z
5

Simultaneous Equations



Haskell uses lazy evaluation by default, although you can modify this to make 
functions strict. 

Main> x = x + 1
Main> "NOOOO, DONT DO IT!!!!!"
"NOOOO, DONT DO IT!!!!!"
Main> x

-- Infinite digression, hit Control-c

If strict evaluation were being used, then x + 1 would be evaluated first, and x is 
unbound (since the binding to x has not yet been made), as if

Main> x = x + 1

<interactive>:47:5: error: Variable not in scope: x
Main>

Evaluation Order: Strict vs Lazy



But Haskell uses lazy evaluation, so 

Main> x = x + 1
Main> x

Look up x, substitute the binding:

(x + 1)

Hm... look up x, substitute the binding:

((x + 1) + 1)

Hm... look up x, substitute the binding:

(((x + 1) + 1) + 1)

etc. to infinite and beyond!

Evaluation Order: Strict vs Lazy

In this regard, as in many 
others, Haskell follows 
ordinary mathematical 
practice, rather than 
imperative programming 
language practice:

x = x + 1 

has no solution in ordinary 
mathematics!



This explains how simultaneous equations in let are evaluated, instead of storing 
values in the state/environment, we store unevaluated expressions and evaluate by 
need:

test = let x = 2 * z
y = 4
z = y + 1

in x

Main> test          Bindings: [(x,(2 * z)), (y,4), (z,(y+1))]
10

eval( test )  
eval( x ) 
eval( 2 * z )

eval( z )
eval( y + 1 )

eval( y )
=> 4

=> 5
=> 10

Evaluation Order: Strict vs Lazy



Haskell only evaluates an expression when it has to, and ONLY as much as it has to. 
Pattern matching doesn't always force evaluation, though printing or adding does:

What you see What is stored in Environment

Main> lst = [2*3,4+8,2^1000]   [(lst, [2*3,4+8,2^1000])]

Main> x = head lst             [(lst, [2*3,4+8,2^1000]),(x, )]

Main> y = head (tail lst)      [(lst, [2*3,4+8,2^1000]),(x, ),(y, )]

Main> add2 (x:y:_) = x + y

Main> z = add2 lst     [(lst, [2*3,4+8,2^1000]),(x, ),(y, ), (z, +  )]

Main> x
6                      [(lst, [ 6 ,4+8,2^1000]),(x, ),(y, ), (z, +  )]

Main> z
18                     [(lst, [ 6 , 12,2^1000]),(x, ),(y, ), (z,18)]    

Lazy Evaluation and Pattern Matching



One important consequence of lazy evaluation is that it allows the creation
and manipulation of infinite data structures. The most common case
is infinite lists, but infinite trees, and other infinite structures, are possible. 

Main> a = [1..]  -- Create an infinite list
Main> a          -- NOOOOOO!   Don’t do this!

-- and if you do, hit control-c

Main> take 10 a
[1,2,3,4,5,6,7,8,9,10]

Main> b = [1,3..]
Main> take 10 b
[1,3,5,7,9,11,13,15,17,19]

Main> c = [ (x,x+1) | x <- [1..] ]
Main> take 5 c
[(1,2),(2,3),(3,4),(4,5),(5,6)]

Infinite Lists

Think of [1..] as an iterator which 
produces the values 1, 2, 3, etc. 
when you ask for them. Iterators 
are built into many languages. In 
Python,  range(...) is an 
iterator. 



A function which needs to access an entire list can not be used with an infinite list:

Main> a = [1..] 

Main> sum a          -- NOOOO! WAYNE, DON'T DO THESE!!!!
Main> length a
Main> last a

But those which only access a finite prefix of the list are fine:

Main> a !! 10
11

Main> takeWhile (<6) a
[1,2,3,4,5]

Main>(b,c) = splitAt 10 a
Main> b
[1,2,3,4,5,6,7,8,9,10]
Main> take 5 c
[11,12,13,14,15]

Infinite Lists



And functions which create new infinite lists from other infinite lists will work, as long 
as they can (lazily) only access a prefix of the list. 

Main> a = map (*10) [1,3..]
Main> take 10 a

Infinite Lists



And functions which create new infinite lists from other infinite lists will work, as long 
as they can (lazily) only access a prefix of the list. 

Main> a = map (*10) [1,3..]
Main> take 10 a
[10,30,50,70,90,110,130,150,170,190]

Main> b = filter (\x -> x `mod` 3 == 0) [1..]
Main> take 10 b

Infinite Lists



And functions which create new infinite lists from other infinite lists will work, as long 
as they can (lazily) only access a prefix of the list. 

Main> a = map (*10) [1,3..]
Main> take 10 a
[10,30,50,70,90,110,130,150,170,190]

Main> b = filter (\x -> x `mod` 3 == 0) [1..]
Main> take 10 b
[3,6,9,12,15,18,21,24,27,30]

Main> c = zip [1..] [10..]
Main> take 8 c

Infinite Lists



And functions which create new infinite lists from other infinite lists will work, as long 
as they can (lazily) only access a prefix of the list. 

Main> a = map (*10) [1,3..]
Main> take 10 a
[10,30,50,70,90,110,130,150,170,190]

Main> b = filter (\x -> x `mod` 3 == 0) [1..]
Main> take 10 b
[3,6,9,12,15,18,21,24,27,30]

Main> c = zip [1..] [10..]
Main> take 8 c
[(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,17)]

Main> zip ['a'..'z'] [0..]

Infinite Lists



Infinite data structures can also be created from recursive equations. Lazy evaluation means 
you only create as much of the list as you need.  Just don't try to print it out or apply a 
function to the whole list!

a = 1:a

What list would satisfy this equation?   Let's expand it out:

a = 1:a
= 1:(1:a)
= 1:1:(1:a)
= 1:1:1:1:1:1:1: .....            
= [1,1,1,1,1,1,1,.... ]

Similarly, 

b = [1,2,3] ++ b
= [1,2,3] ++ ([1,2,3] ++ b)
= [1,2,3,1,2,3] ++ ([1,2,3] ++ b)
= [1,2,3,1,2,3,1,2,3,..... ]          

Infinite Lists



s = 1:t                -- can do this in a file, not in repl
t = 2:u
u = 3:s

Main> take 10 s

Infinite Lists



s = 1:t                -- can do this in a file, not in repl
t = 2:u
u = 3:s

Main> take 10 s
[1,2,3,1,2,3,1,2,3,1]

Main> take 10 t
[2,3,1,2,3,1,2,3,1,2]

Main> take 10 u
[3,1,2,3,1,2,3,1,2,3]

Main> w = 1:(map (*2) w)

Main> take 10 w

Infinite Lists



s = 1:t                -- can do this in a file, not in repl
t = 2:u
u = 3:s

Main> take 10 s
[1,2,3,1,2,3,1,2,3,1]

Main> take 10 t
[2,3,1,2,3,1,2,3,1,2]

Main> take 10 u
[3,1,2,3,1,2,3,1,2,3]

Main> w = 1:(map (*2) w)

Main> take 10 w
[1,2,4,8,16,32,64,128,256,512]

Infinite Lists



s = 1:t                -- can do this in a file, not in repl
t = 2:u
u = 3:s

Main> take 10 s
[1,2,3,1,2,3,1,2,3,1]

Main> take 10 t
[2,3,1,2,3,1,2,3,1,2]

Main> take 10 u
[3,1,2,3,1,2,3,1,2,3]

Main> w = 1:(map (*2) w)

Main> take 10 w
[1,2,4,8,16,32,64,128,256,512]

Infinite Lists



Combining recursion with list comprehensions is a typical Haskell idiom:

Main> a = [ x + 1 | x <- [1..] ]

Main> take 10 a

Infinite Lists



Combining recursion with list comprehensions is a typical Haskell idiom:

Main> a = [ x + 1 | x <- [1..] ]

Main> take 10 a
[2,3,4,5,6,7,8,9,10,11]

Main> b = [ x + y | (x,y) <- zip [1..] [5..] ]

Main> take 10 b

Infinite Lists



Combining recursion with list comprehensions is a typical Haskell idiom:

Main> a = [ x + 1 | x <- [1..] ]

Main> take 10 a
[2,3,4,5,6,7,8,9,10,11]

Main> b = [ x + y | (x,y) <- zip [1..] [5..] ]

Main> take 10 b
[6,8,10,12,14,16,18,20,22,24]

Main> c = 1:[ x * 2 | x <- c ]

Main> take 10 c

Infinite Lists



Combining recursion with list comprehensions is a typical Haskell idiom:

Main> a = [ x + 1 | x <- [1..] ]

Main> take 10 a
[2,3,4,5,6,7,8,9,10,11]

Main> b = [ x + y | (x,y) <- zip [1..] [5..] ]

Main> take 10 b
[6,8,10,12,14,16,18,20,22,24]

Main> c = 1:[ x * 2 | x <- c ]

Main> take 10 c
[1,2,4,8,16,32,64,128,256,512]

Infinite Lists



Combining finite lists with infinite lists works pretty well:

Main> h = [ (x,y) | x <- [1,2,3], y <- [2,4..] ]

Main> take 10 h

Infinite Lists



Combining finite lists with infinite lists works pretty well:

Main> h = [ (x,y) | x <- [1,2,3], y <- [2,4..] ]

Main> take 10 h
[(1,2),(1,4),(1,6),(1,8),(1,10),(1,12),(1,14),(1,16),(1,18),(1,20)]

Main> i = [ (x,y) | x <- [1,3..], y <- [1,2,3] ]

Main> take 10 i

Infinite Lists



Combining finite lists with infinite lists works pretty well:

Main> h = [ (x,y) | x <- [1,2,3], y <- [2,4..] ]

Main> take 10 h
[(1,2),(1,4),(1,6),(1,8),(1,10),(1,12),(1,14),(1,16),(1,18),(1,20)]

Main> i = [ (x,y) | x <- [1,3..], y <- [1,2,3] ]

Main> take 10 i
[(1,1),(1,2),(1,3),(3,1),(3,2),(3,3),(5,1),(5,2),(5,3),(7,1)]

But combining two infinite lists can be tricky!

Main> j = [ (x,y) | x <- [1..], y <- [10..] ]   
Main> take 8 j

Infinite Lists



Combining finite lists with infinite lists works pretty well:

Main> h = [ (x,y) | x <- [1,2,3], y <- [2,4..] ]

Main> take 10 h
[(1,2),(1,4),(1,6),(1,8),(1,10),(1,12),(1,14),(1,16),(1,18),(1,20)]

Main> i = [ (x,y) | x <- [1,3..], y <- [1,2,3] ]

Main> take 10 i
[(1,1),(1,2),(1,3),(3,1),(3,2),(3,3),(5,1),(5,2),(5,3),(7,1)]

But combining two infinite lists can be tricky!

Main> j = [ (x,y) | x <- [1..], y <- [10..] ]    -- BAD!
Main> take 8 j
[(1,10),(1,11),(1,12),(1,13),(1,14),(1,15),(1,16),(1,17)]

Main> k = [ x + y | (x,y) <- zip [1..] [5..] ]    -- GOOD!
Main> take 10 k

Infinite Lists



Combining finite lists with infinite lists works pretty well:

Main> h = [ (x,y) | x <- [1,2,3], y <- [2,4..] ]

Main> take 10 h
[(1,2),(1,4),(1,6),(1,8),(1,10),(1,12),(1,14),(1,16),(1,18),(1,20)]

Main> i = [ (x,y) | x <- [1,3..], y <- [1,2,3] ]

Main> take 10 i
[(1,1),(1,2),(1,3),(3,1),(3,2),(3,3),(5,1),(5,2),(5,3),(7,1)]

But combining two infinite lists can be tricky!

Main> j = [ (x,y) | x <- [1..], y <- [10..] ]    -- BAD!
Main> take 8 j
[(1,10),(1,11),(1,12),(1,13),(1,14),(1,15),(1,16),(1,17)]

Main> k = [ x + y | (x,y) <- zip [1..] [5..] ]    -- GOOD!
Main> take 10 k
[6,8,10,12,14,16,18,20,22,24]

Infinite Lists



But be careful that you are not somehow asking Haskell to look at a whole infinite list!

Main> a = filter (<10) [1..]

Infinite Lists



The power of infinite lists leads to some very interesting algorithms in Haskell, particularly 
when generating useful infinite series. 

Prime Numbers:

Main> factors x = filter (\y -> x `mod` y == 0) [1..x]
Main> primes = [ x | x <- [1..], factors x == [1,x] ]
Main> take 20 primes
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71]

Factorials:

Main> fact = map (\n -> product [1..n]) [1..]
Main> take 10 fact
[1,2,6,24,120,720,5040,40320,362880,3628800]

Fibonacci Numbers:

Main> fib = 1:1:[ x+y | (x,y) <- zip fib (tail fib) ]
Main> take 18 fib
[1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584]

Programming with Infinite Lists



Infinite Trees

10.0

5.0                              20.0

1.25  5.0  5.0  20.0  5.0  20.0  20.0  80.0

2.5     10.0     10.0     40.0



Main> tree 10   -- NOOOOO, WAYNE, DON'T DO IT   AHHHHH!
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node 
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node 
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node 
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node 
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node 
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node 
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node 
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node 
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node 
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node 
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node

Infinite Trees



Main> level 0 $ tree 10
[10.0]

Main> level 1 $ tree 10
[5.0,20.0]

Main> level 2 $ tree 10
[2.5,10.0,10.0,40.0]

Main> level 3 $ tree 10
[1.25,5.0,5.0,20.0,5.0,20.0,20.0,80.0]

Infinite Trees

10.0

5.0                              20.0

1.25  5.0  5.0  20.0  5.0  20.0  20.0  80.0

2.5     10.0     10.0     40.0


